I Définition

```
Soit i le nombre imaginaire tel que i^2 = -1
On appelle nombre complexe tout nombre
z = a + b i avec a et b deux réels.
```

• • •

I Définition

```
Soit i le nombre imaginaire tel que i² = - 1

On appelle nombre complexe tout nombre

z = a + b i avec a et b deux réels.

a est la partie réelle du nb compl. z

b est la partie imaginaire du nb compl. z
```

I Définition

```
Soit i le nombre imaginaire tel que i² = - 1

On appelle nombre complexe tout nombre

z = a + b i avec a et b deux réels.

a est la partie réelle du nb compl. z

b est la partie imaginaire du nb compl. z
```

Lorsque la partie imaginaire est nulle alors z est ...

Lorsque la partie réelle est nulle alors z est dit ...

I Définition

Soit i le nombre imaginaire tel que $i^2 = -1$

On appelle nombre complexe tout nombre

z = a + bi avec a et b deux réels.

- a est la partie réelle du n^b compl. z
- b est la partie imaginaire du n^b compl. z

Lorsque la partie imaginaire est nulle alors z est réel.

Lorsque la partie réelle est nulle alors z est dit imaginaire pur.

I Définition

```
Soit i le nombre imaginaire tel que i² = - 1

On appelle nombre complexe tout nombre

z = a + b i avec a et b deux réels.

a est la partie réelle du nb compl. z

b est la partie imaginaire du nb compl. z
```

a + b i est appelée forme algébrique du nb compl. z

I Définition

```
Soit i le nombre imaginaire tel que i<sup>2</sup> = -1

On appelle nombre complexe tout nombre

z = a + b i avec a et b deux réels.

a est la partie réelle du n<sup>b</sup> compl. z

b est la partie imaginaire du n<sup>b</sup> compl. z
```

a + b i est appelée forme algébrique du n^b compl. z Le conjugué de z noté \overline{z} est a – bi

I Définition

```
Soit i le nombre imaginaire tel que i² = - 1

On appelle nombre complexe tout nombre

z = a + b i avec a et b deux réels.

a est la partie réelle du nb compl. z

b est la partie imaginaire du nb compl. z
```

a + b i est appelée forme algébrique du n^b compl. z Le conjugué de z noté \overline{z} est a – bi L'ensemble des nombres complexes est noté \mathbb{C} .

II Intérêt des nombres complexes

Ils permettent de simplifier la résolution de problèmes réels

d'électricité

d'optique

de géométrie etc...

bien que l'on utilise un nombre imaginaire.

III Opérations sur les nombres complexes

Ce sont les mêmes opérations

que dans les réels avec en plus i² = - 1

W

Exemples: Exercice 1:

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$

Déterminez
$$z_1 = z + w$$
 $z_2 = w + \overline{w}$ $z_3 = 3z$ $z_4 = z - \overline{z}$ $z_5 = z w$ $z_6 = z \overline{z}$ $z_7 = ---$

Que remarquez-vous ? Démontrez les conjectures.

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_1 = z + w = 2 - 3i + 1 + 2i$

Soient z = 2 - 3i et w = 1 + 2i $z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i$

```
Soient z = 2 - 3i et w = 1 + 2i

z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i

z_2 = w + \overline{w} = (1 + 2i) + (1 - 2i)
```

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i$
 $z_2 = w + \overline{w} = (1 + 2i) + (1 - 2i) = 2$ réel

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i$
 $z_2 = w + \overline{w} = (1 + 2i) + (1 - 2i) = 2$ réel

$$z + \overline{z} = (a + bi) + (a - bi) = 2a$$

 $z + \overline{z}$ est toujours un réel.

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i$
 $z_2 = w + \overline{w} = (1 + 2i) + (1 - 2i) = 2$ réel

$$z + \overline{z} = (a + bi) + (a - bi) = 2a$$

 $z + \overline{z}$ est toujours un réel.

$$z_3 = 3z = 3 (2 - 3i)$$

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_1 = z + w = 2 - 3i + 1 + 2i = 2 + 1 - 3i + 2i = 3 - i$
 $z_2 = w + \overline{w} = (1 + 2i) + (1 - 2i) = 2$ réel

$$z + \overline{z} = (a + bi) + (a - bi) = 2a$$

 $z + \overline{z}$ est toujours un réel.

$$z_3 = 3z = 3(2-3i) = 6-9i$$

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i)$

Soient z = 2 - 3i et w = 1 + 2i $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

$$z - \overline{z} = (a + bi) - (a - bi)$$

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

$$z - \overline{z} = (a + bi) - (a - bi) = a + bi - a + bi = 2bi$$

 $z - \overline{z}$ est toujours un **imaginaire pur.**

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

$$z - \overline{z} = (a + bi) - (a - bi) = a + bi - a + bi = 2bi$$

 $z - \overline{z}$ est toujours un **imaginaire pur.**

$$z_5 = z w = (2 - 3i) (1 + 2i)$$

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

$$z - \overline{z} = (a + bi) - (a - bi) = a + bi - a + bi = 2bi$$

 $z - \overline{z}$ est toujours un **imaginaire pur.**

$$z_5 = z w = (2 - 3i) (1 + 2i) = 2(1 + 2i) - 3i(1 + 2i)$$

= 2 + 4i - 3i - 6i²

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z_4 = z - \overline{z} = (2 - 3i) - (2 + 3i) = -6i$ imaginaire pur

$$z - \overline{z} = (a + bi) - (a - bi) = a + bi - a + bi = 2bi$$

 $z - \overline{z}$ est toujours un **imaginaire pur.**

$$z_5 = z w = (2 - 3i) (1 + 2i) = 2(1 + 2i) - 3i(1 + 2i)$$

= 2 + 4i - 3i - 6i² = 2 + i - 6(-1) = 8 + i

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$

$$z_6 = z \overline{z} = (2 - 3i)(2 + 3i)$$

$$z_6 = z \overline{z} = (2 - 3i) (2 + 3i) = 2(2 + 3i) - 3i(2 + 3i)$$

= 4 + 6i - 6i - 9i²

$$z_6 = z \overline{z} = (2 - 3i) (2 + 3i) = 2(2 + 3i) - 3i(2 + 3i)$$

= 4 + 6i - 6i - 9i² = 4 - 9(-1) = **13** réel

$$z_6 = z \overline{z} = (2 - 3i) (2 + 3i) = 2(2 + 3i) - 3i(2 + 3i)$$

= 4 + 6i - 6i - 9i² = 4 - 9(-1) = **13** réel

$$z \times \overline{z} = (a + bi) (a - bi)$$

$$z_6 = z \overline{z} = (2 - 3i) (2 + 3i) = 2(2 + 3i) - 3i(2 + 3i)$$

= 4 + 6i - 6i - 9i² = 4 - 9(-1) = **13** réel

$$z \times \overline{z} = (a + bi) (a - bi) = a^2 - (bi)^2$$

= $a^2 - b^2 i^2$

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$

$$z_6 = z \overline{z} = (2 - 3i) (2 + 3i) = 2(2 + 3i) - 3i(2 + 3i)$$

= 4 + 6i - 6i - 9i² = 4 - 9(-1) = **13** réel

$$z \times \overline{z} = (a + bi) (a - bi) = a^2 - (bi)^2$$

= $a^2 - b^2 i^2 = a^2 - b^2 (-1) = a^2 + b^2$

 $z \times \overline{z}$ est toujours un réel positif.

Soient
$$z = 2 - 3i$$
 et $w = 1 + 2i$
 $z = 2 - 3i$
 $z = -3i$
 $z = -3i$

On veut obtenir $z_7 = a + bi$ avec a et b deux réels Il faut donc faire disparaître ...

On veut obtenir $z_7 = a + bi$ avec a et b deux réels Il faut donc faire disparaître le i du dénominateur, par l'opération ...

identité remarquable n° 3 : $(1+2i)(1-2i) = 1^2 - (2i)^2 = 1 - 4i^2 = 1 - 4(-1) = 5$ car w × w̄ est le réel positif a² + b² (voir z₆) Il reste à obtenir z₇ = ... + ... i en simplifiant le numérateur, puis en le divisant par le dénominateur.