Exercice 5:

Soit la fonction f définie sur [-2;6]par $f(x) = x^3 - 7x^2 + 15x - 9$

1°) Développez (3x – 5) (x – 3)
2°) Déterminez ses extremums et ses signes.

```
f(x) = x^3 - 7x^2 + 15x - 9 \text{ sur } [-2; 6]
1^\circ)
(3x - 5)(x - 3) = 3x(x - 3) - 5(x - 3)
= 3x^2 - 9x - 5x + 15 = 3x^2 - 14x + 15
```

```
f(x) = x^3 - 7x^2 + 15x - 9 sur[-2; 6]
1°)
(3x-5)(x-3)=3x(x-3)-5(x-3)
  = 3x^2 - 9x - 5x + 15 = 3x^2 - 14x + 15
2°) Déterminez ses extremums et
ses signes.
```

Ils sont obtenus par ...

```
f(x) = x^3 - 7x^2 + 15x - 9 sur[-2; 6]
1°)
(3x-5)(x-3)=3x(x-3)-5(x-3)
  = 3x^{2} - 9x - 5x + 15 = 3x^{2} - 14x + 15
2°) Déterminez ses extremums et
```

Ils sont obtenus par le tableau de variations, obtenu par ...

ses signes.

```
f(x) = x^3 - 7x^2 + 15x - 9 sur [ - 2; 6]

1°)

(3x-5)(x-3) = 3x(x-3)-5(x-3)

= 3x^2 - 9x - 5x + 15 = 3x^2 - 14x + 15

2°) Déterminez ses extremums et
```

2°) Déterminez ses extremums et ses signes.

Ils sont obtenus par le tableau de variations, obtenu par le théorème de la monotonie.

$$f(x) = x^3 - 7x^2 + 15x - 9 sur[-2;6]$$

1°)
$$(3x-5)(x-3) = 3x^2 - 14x + 15$$

2°) extremums et signes :

Ils sont obtenus par le tableau de variations, obtenu par le théorème de la monotonie.

$$f'(x) = (x^3)' - 7(x^2)' + (15x - 9)'$$
$$= (3x^2) - 7(2x) + (15)$$
$$= 3x^2 - 14x + 15$$

f(x) =
$$x^3 - 7x^2 + 15x - 9$$
 sur [- 2; 6]
1°) (3x-5) (x-3) = $3x^2 - 14x + 15$
2°) théorème de la monotonie :
signes de f' \Rightarrow variations de f
f'(x) = (x^3)' - 7 (x^2)' + ($15x - 9$)'
= ($3x^2$) - 7 ($2x$) + (15)
= $3x^2 - 14x + 15$
f'(x) = 0 \Rightarrow $3x^2 - 14x + 15 = 0$
impossible à résoudre

$$f(x) = x^3 - 7x^2 + 15x - 9 \text{ sur } [-2; 6]$$

$$1^\circ) (3x - 5) (x - 3) = 3x^2 - 14x + 15$$

$$2^\circ) f'(x) = (x^3)' - 7(x^2)' + (15x - 9)'$$

$$= (3x^2) - 7(2x) + (15)$$

$$= 3x^2 - 14x + 15$$

$$f'(x) = 0 \iff 3x^2 - 14x + 15 = 0$$
impossible à résoudre
$$\iff (3x - 5) (x - 3) = 0 \text{ d'après la question } 1^\circ$$

$$\implies x = 5/3 \text{ ou } x = 3$$

$$f(x) = x^3 - 7x^2 + 15x - 9 sur[-2;6]$$

1°)
$$(3x-5)(x-3) = 3x^2 - 14x + 15$$

$$2^{\circ}$$
) f '(x) = $3x^2 - 14x + 15$

$$f'(x) = 0 \iff 3x^2 - 14x + 15 = 0$$

impossible à résoudre

$$(3x-5)(x-3)=0$$
 d'après la question 1°

$$\langle x = 5/3 \quad \text{ou} \quad x = 3$$

X	- 2	5/3	3	6
f '(x)		0	0	

$$f(x) = x^3 - 7x^2 + 15x - 9 sur[-2; 6]$$

2°) Les signes de f '(x) =
$$3x^2 - 14x + 15$$

= $(3x - 5)(x - 3)$

sont obtenus avec un tableau de signes :

X	- 2	5/3	3	6
3x-5		O		
x - 3			O	
f '(x)		O	0	

$$f(x) = x^3 - 7x^2 + 15x - 9 sur[-2; 6]$$

2°) Les signes de f '(x) =
$$3x^2 - 14x + 15$$

= $(3x - 5)(x - 3)$

sont obtenus avec un tableau de signes :

X	- 2		5/3		3		6
3x-5		-	0	+		+	
x - 3		-		-	0	+	
f '(x)			0		0		

$$f(x) = x^3 - 7x^2 + 15x - 9 sur[-2; 6]$$

2°) Les signes de f '(x) =
$$3x^2 - 14x + 15$$

= $(3x - 5)(x - 3)$

sont obtenus avec un tableau de signes :

X	- 2		5/3		3		6
3x-5		-	0	+		+	
x - 3		-		-	O	+	
f '(x)		+	0	-	0	+	

$$f'(x) = 3x^2 - 14x + 15$$

X	- 2		5/3		3		6
f '(x)		+	0	-	0	+	

J'utilise le th. de la monotonie pour en déduire les sens de variation de f à partir des signes de f '

$$f'(x) = 3x^2 - 14x + 15$$

x	- 2		5/3		3		6
f '(x)		+	0	-	0	+	
f(x)			7		\ <u>\</u>		<i>></i>

J'utilise le th. de la monotonie pour en déduire les sens de variation de f à partir des signes de f '

$$f'(x) = 3x^2 - 14x + 15$$

x	- 2		5/3		3		6
f '(x)		+	0	-	0	+	
f(x)	-75		7		\ <u>\</u>		<i>></i>

J'utilise le th. de la monotonie pour en déduire les sens de variation de f à partir des signes de f '

$$f(-2) = (-2)^3 - 7(-2)^2 + 15(-2) - 9 = -8 - 28 - 30 - 9 = -75$$

$$f'(x) = 3x^2 - 14x + 15$$

X	- 2		5/3		3		6
f '(x)		+	0	-	0	+	
f(x)	-25-		32/27		~ 0_		45

J'utilise le th. de la monotonie pour en déduire les sens de variation de f à partir des signes de f '

$$f(-2) = (-2)^3 - 7(-2)^2 + 15(-2) - 9 = -8 - 28 - 30 - 9 = -75$$

Même méthode pour les autres extremums locaux.

$$f'(x) = 3x^2 - 14x + 15$$

X	- 2		5/3		3		6
f '(x)		+	0	-	0	+	
f(x)	-25-		32/27		~ 0		45

J'utilise le th. de la monotonie pour en déduire les sens de variation de f à partir des signes de f '

$$f(-2) = (-2)^3 - 7(-2)^2 + 15(-2) - 9 = -8 - 28 - 30 - 9 = -75$$

Même méthode pour les autres extremums locaux.

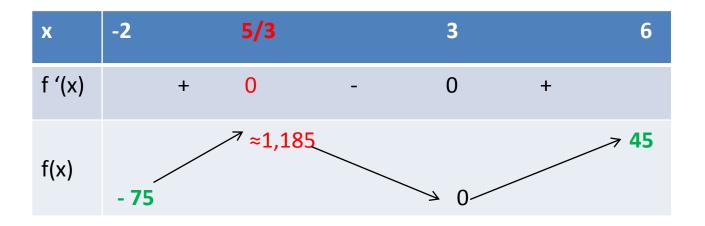
Maximum = 45 atteint en 6

et Minimum = - 75 atteint en - 2.

Non!

Contrexemple:

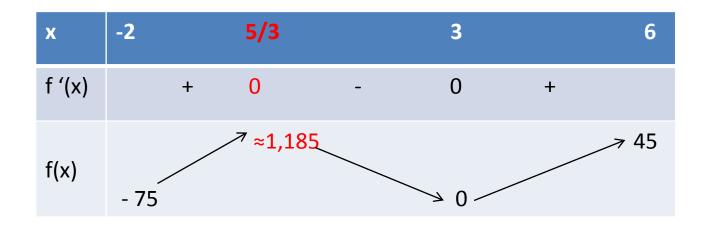
f '(5/3) = 0 mais f(5/3) n'est ni le minimum ni le maximum de f.



Non!

Contrexemple:

f'(5/3) = 0 mais f(5/3) n'est ni le minimum ni le maximum de f. Mais c'est un extremum local!



Non!

Contrexemple pour la fonction f(x) = ...

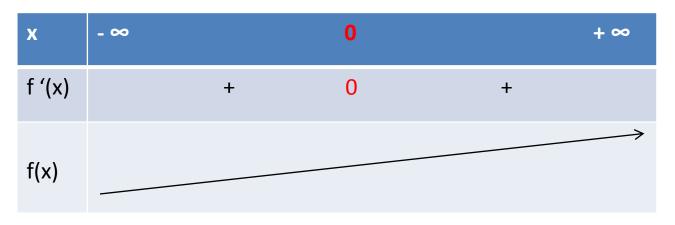
Non!

Contrexemple pour la fonction $f(x) = x^3$

Non!

Contrexemple pour la fonction $f(x) = x^3$

$$f'(x) = 3x^2$$

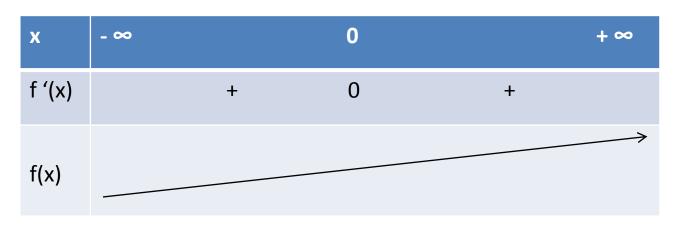


f '(w) = 0 implique que f(w) est un extremum local si on a en plus la condition ...

Non!

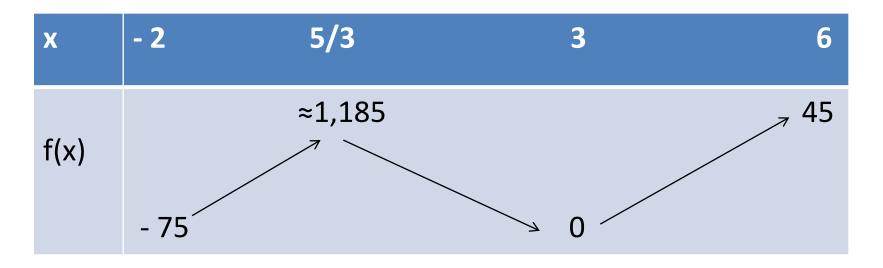
Contrexemple pour la fonction $f(x) = x^3$

$$f'(x) = 3x^2$$



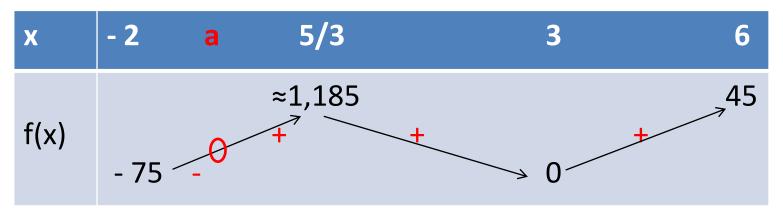
f '(w) = 0 implique que f(w) est un extremum local si on a en plus la condition f '(x) change de signe en w!

3°) et déduisez-en son tableau de signes.



... ?

3°) et déduisez-en son tableau de signes.

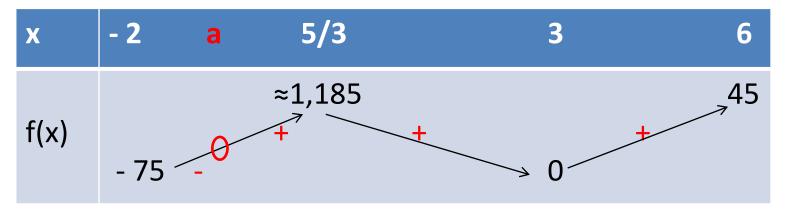


On en déduit grâce aux différentes monotonies :

Sur [- 2 ; 5/3] il existe un unique antécédent a

tel que
$$f(a) = 0$$

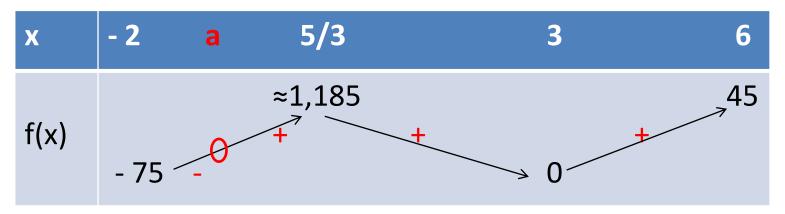
3°) et déduisez-en son tableau de signes.



Recherche de a:

...?

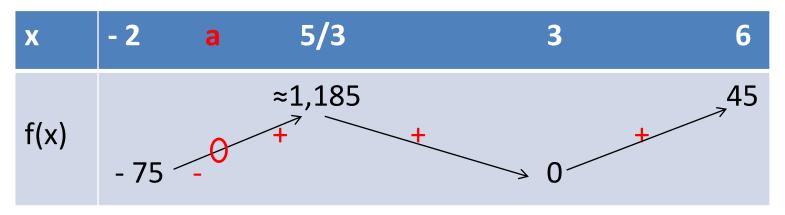
3°) et déduisez-en son tableau de signes.



Recherche de a:

On doit résoudre f(a) = 0 ...

3°) et déduisez-en son tableau de signes.



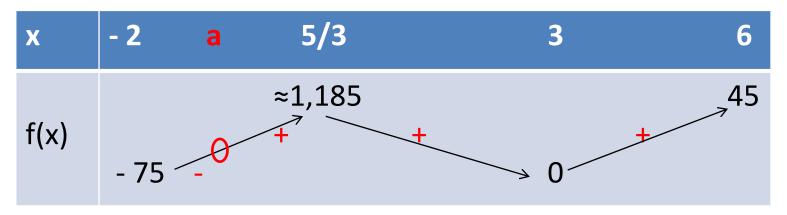
Recherche de a:

On doit résoudre f(a) = 0

que l'on est incapable de résoudre.

Il faut donc ...

3°) et déduisez-en son tableau de signes.



Recherche de a :

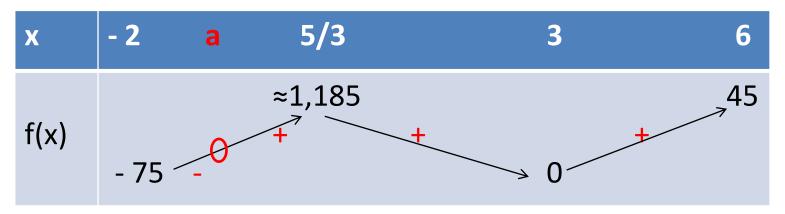
On doit résoudre f(a) = 0

que l'on est incapable de résoudre.

Il faut donc faire une recherche à la calculatrice.

On obtient f(...) = 0

3°) et déduisez-en son tableau de signes.



Recherche de a :

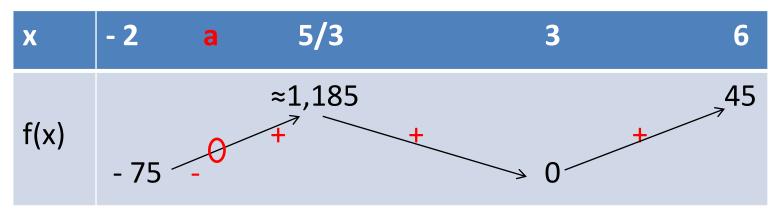
On doit résoudre f(a) = 0

que l'on est incapable de résoudre.

Il faut donc faire une recherche à la calculatrice.

On obtient f(1) = 0

3°) et déduisez-en son tableau de signes.



Recherche de a :

On doit résoudre f(a) = 0

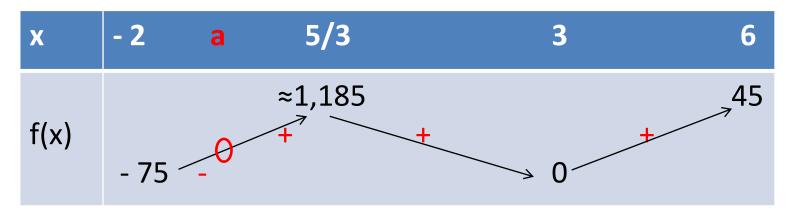
que l'on est incapable de résoudre.

Il faut donc faire une recherche à la calculatrice.

On obtient $f(1,000000000) \approx 0$

... ?

3°) et déduisez-en son tableau de signes.



Recherche de a :

On doit résoudre f(a) = 0

que l'on est incapable de résoudre.

Il faut donc faire une recherche à la calculatrice.

On obtient $f(1,000000000) \approx 0$

a serait-il l'entier 1?

3°) et déduisez-en son tableau de signes.

X	- 2	a	5/3	3	6
f(x)	- 75 ⁻	_0	≈1,185 +	+ 0 +	_A 45

Recherche de a : On doit résoudre f(a) = 0que l'on est incapable de résoudre.

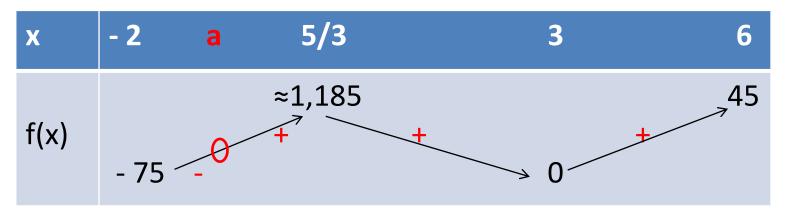
Il faut donc faire une recherche à la calculatrice.

On obtient $f(1,000000000) \approx 0$

a serait-il l'entier 1 ?
$$f(1) = (1)^3 - 7(1)^2 + 15(1) - 9$$

= 1 - 7 + 15 - 9 = 16 - 16 = 0 Oui!

3°) et déduisez-en son tableau de signes.



Après recherche à la calculatrice et f(1) = 0 donc a = 1On en déduit :

X	- 2	1		3		6
f (x)	-	0	+	0	+	